THE CENTER OF THE TAYLOR CIRCLE

Gilles Boutte Ancien élève de l'École Normale Supérieure

March 20, 2002

Abstract

This paper answers a question from Paul Yiu to group *Hyacinthos*. How give a synthetic proof that the center of the Taylor circle of a given triangle is the Spieker center of its orthic triangle? More properties of the orthic triangle, its medial triangle and the Taylor circle can be found, with synthetic proofs, in [1] pp. 26-41.

1 Notations

We denote

- ABC any triangle in the plane;
- H the orthocentrer of ABC;
- $H_AH_bH_c$ the orthic triangle of ABC, i.e. both cevian and pedal triangle of H;
- A'B'C' the medial triangle of $H_AH_bH_c$, i.e. A' is the midpoint between H_b and H_c , B' and C' cyclically;
- H_{ab} the orthogonal projection of H_a on the line (AB), H_{ac} , H_{ba} , H_{bc} , H_{ca} , H_{cb} cyclically.

The following results are not proved.

The lines (H_bH_c) and (BC) are antiparallel with respect to (AB) and (AC).

The perpendicular bisector of $[H_bH_c]$ passes through the midpoint between B and C.

Both results become of the concyclicity of B, C, H_b , H_c on the circle with diameter [BC] and center the midpoint between B and C.

2 Parallel lines

Proposition 1

The line $(H_{ba}H_{ca})$ and (BC) are parallel (cf. fig. 1).

 $Proof: H_{ba}$ and H_{ca} are, in AH_bH_c , the feet of the altitudes, so the lines $(H_{ba}H_{ca})$ and (H_bH_c) are antiparallel with respect to (AB) and (AC).

The result becomes because (H_bH_c) and (BC) are also antiparallel with respect to (AB) and (AC).

Proposition 2

The perpendicular bisector of $[H_{ba}H_{ca}]$ is the A'-angle bisector of A'B'C' (cf. fig. 1).

Figure 1:

Proof: The perpendicular bisector of $[H_{ba}H_{ca}]$ passes through A' and is perpendicular to $(H_{ba}H_{ca})$ so to (BC): it is the parallel, through A' to the altitude (AH_a) . This line is the H_a -angle bisector in the orthic triangle $H_aH_bH_c$. The resultes becomes obviously.

We have:

• The perpendicular bisectors of $[H_{ba}H_{ca}]$, $[H_{cb}H_{ab}]$, $[H_{ac}H_{bc}]$ are the angle bisectors of A'B'C', they are concurrent at its incentrer¹, i.e. the Spieker point of the orthic triangle.

• The points H_{ba} , H_{ca} , H_{cb} , H_{ab} , H_{ac} , H_{bc} are concyclic on the Taylor circle of ABC, so the perpendicular bisectors of $[H_{ba}H_{ca}]$, $[H_{cb}H_{ab}]$, $[H_{ac}H_{bc}]$ are concurrent at the center of this circle.

The center of the Taylor circle is the Spieker center of the orthic triangle.

Figure 2: The Taylor circle

References

[1] Yvonne et René SORTAIS. La géométrie du triangle. HERMANN, Paris, 1987.

¹ with ABC acute angled, else they are concurrent at one of its excenters.